
!

Use " tests/ to store tests that will alert you if your code breaks.

Add a tests/ directory  

Import testthat with devtools::use_testthat(), which 
sets up package to use automated tests with testthat 

Write tests with context(), test(), and expect statements 

Save your tests as .R files in tests/testthat/

1. Modify your code or tests. 
2. Test your code with one of  

devtools::test() 
Runs all tests in " tests/  

Ctrl/Cmd + Shift + T  
(keyboard shortcut) 

3. Repeat until all tests pass

!
!

context("Arithmetic") 

test_that("Math works", { 
  expect_equal(1 + 1, 2) 
  expect_equal(1 + 2, 3) 
  expect_equal(1 + 3, 4) 
})

Package Structure

Package Development: : CHEAT SHEET 
Setup (# DESCRIPTION)

RStudio® is a trademark of RStudio, Inc.  •  CC BY RStudio •  info@rstudio.com  •  844-448-1212 • rstudio.com •  Learn more at http://r-pkgs.had.co.nz/  •  devtools 1.5.1  •  Updated: 2015-01

The contents of a package can be stored on disk as a: 
• source - a directory with sub-directories (as above) 
• bundle - a single compressed file (.tar.gz) 
• binary - a single compressed file optimized for a specific OS 

Or installed into an R library (loaded into memory during an R 
session) or archived online in a repository. Use the functions 
below to move between these states.

install.packages() CRAN ○
install.packages(type = 
"source")

CRAN ○

○ ○
R CMD install ○ ○

○ ○
devtools::install() ○
devtools::build() ○ ○
devtools::install_github(
)

github ○
devtools::load_all() ○ ○
Build & Reload (RStudio) ○ ○ ○
library() ○ ○

Internet On disk library memory

Re
po

si
to

ry
 

So
ur

ce

Bu
nd

le

Bi
na

ry

In
st

al
le

d

In
 m

em
or

y

A package is a convention for organizing files into directories.  

This sheet shows how to work with the 7 most common parts of 
an R package:

% Package 
#  DESCRIPTION 
"  R/ 
"  tests/ 
"  man/ 
"  vignettes/ 
"  data/ 
#  NAMESPACE 

devtools::add_build_ignore("file") 
Adds file to .Rbuildignore, a list of files that will not be included 
when package is built.

SETUP
WRITE CODE

TEST
DOCUMENT

TEACH
ADD DATA
ORGANIZE

You must have a DESCRIPTION file 

Add the packages that yours relies on with 
devtools::use_package() 

Adds a package to the Imports or Suggests field

!
!

Package: mypackage 
Title: Title of Package 
Version: 0.1.0 
Authors@R: person("Hadley", "Wickham", email =  
    "hadley@me.com", role = c("aut", "cre")) 
Description: What the package does (one paragraph) 
Depends: R (>= 3.1.0) 
License: GPL-2 
LazyData: true 
Imports:  
    dplyr (>= 0.4.0), 
    ggvis (>= 0.2) 
Suggests: 
    knitr (>= 0.1.0)

MIT license applies to 
your code if re-shared.

MIT

Visit r-pkgs.had.co.nz to 
learn much more about 
writing and publishing 
packages for R

All of the R code in your package goes in " R/. A package with just 
an R/ directory is still a very useful package.

Create a new package project with 

devtools::create("path/to/name") 
Create a template to develop into a package. 

Save your code in " R/ as scripts (extension .R)

1. Edit your code. 
2. Load your code with one of  

devtools::load_all() 
Re-loads all saved files in " R/ into memory.  

Ctrl/Cmd + Shift + L (keyboard shortcut) 
Saves all open files then calls load_all(). 

3. Experiment in the console. 
4. Repeat.

!

!

• Use consistent style with r-pkgs.had.co.nz/r.html#style 
• Click on a function and press F2 to open its definition 
• Search for a function with Ctrl + .

Suggest packages that are not very 
essential to yours. Users can install 
them manually, or not, as they like.

Import packages that your package 
must have to work. R will install them 
when it installs your package.

GPL-2 license applies to your 
code, and all code anyone 
bundles with it, if re-shared.

GPL-2
No strings attached.

CC0

WORKFLOW

Write Code ( " R/)

Expect statement Tests

expect_equal() is equal within small numerical tolerance?
expect_identical() is exactly equal?
expect_match() matches specified string or regular 

expression?expect_output() prints specified output?
expect_message() displays specified message?
expect_warning() displays specified warning?
expect_error() throws specified error?
expect_is() output inherits from certain class?
expect_false() returns FALSE?
expect_true() returns TRUE?

Example Test

WORKFLOW

!

Test ( " tests/)

The  # DESCRIPTION file describes your work,  sets up how your 
package will work with other packages, and applies a copyright.

https://creativecommons.org/licenses/by/4.0/
mailto:info@rstudio.com
http://rstudio.com
mailto:hadley@me.com
http://r-pkgs.had.co.nz


.Rd FORMATTING TAGS

Add Data (" data/)

RStudio® is a trademark of RStudio, Inc.  •  CC BY RStudio •  info@rstudio.com  •  844-448-1212 • rstudio.com •  Learn more at http://r-pkgs.had.co.nz/  •  devtools 1.5.1  •  Updated: 2015-01

Document (" man/)

Organize (# NAMESPACE)

Teach (" vignettes/)

--- 
title: "Vignette Title" 
author: "Vignette Author" 
date: "`r Sys.Date()`" 
output: rmarkdown::html_vignette 
vignette: > 
  %\VignetteIndexEntry{Vignette Title} 
  %\VignetteEngine{knitr::rmarkdown} 
  \usepackage[utf8]{inputenc} 
---

" vignettes/ holds documents that teach your users how to solve real problems with your tools.

Create a " vignettes/  directory and a template vignette with 

devtools::use_vignette() 
Adds template vignette as vignettes/my-vignette.Rmd. 

Append YAML headers to your vignettes (like right) 
Write the body of your vignettes in R Markdown 
(rmarkdown.rstudio.com)

!

!
!

\email{name@@foo.com} 
\href{url}{display} 
\url{url} 

\link[=dest]{display} 
\linkS4class{class} 
\code{\link{function}} 
\code{\link[package]{function}} 

\tabular{lcr}{ 
    left \tab centered \tab right \cr 
    cell \tab cell            \tab cell   \cr 
}

\emph{italic text} 
\strong{bold text} 
\code{function(args)} 
\pkg{package} 

\dontrun{code} 
\dontshow{code} 
\donttest{code} 

\deqn{a + b (block)} 
\eqn{a + b (inline)}

" man/ contains the documentation for your functions, the help  
pages in your package.

1. Add roxygen comments in your .R files 
2. Convert roxygen comments into documentation with one of: 

devtools::document() 
Converts roxygen comments to .Rd files and places 
them in " man/. Builds NAMESPACE. 

Ctrl/Cmd + Shift + D (Keyboard Shortcut) 

3. Open help pages with ? to preview documentation 
4. Repeat

Use roxygen comments to document each function 
beside its definition 

Document the name of each exported data set 

Include helpful examples for each function

!
!
!

WORKFLOW

The roxygen2 package lets you write  
documentation inline in your .R files with a  
shorthand syntax. devtools implements  
roxygen2 to make documentation. 

• Add roxygen documentation as comment lines  
that begin with #’.  

• Place comment lines directly above the code that defines the 
object documented.  

• Place a roxygen @ tag (right) after #’ to supply a specific 
section of documentation.  

• Untagged lines will be used to generate a title, description, 
and details section (in that order)

#' Add together two numbers. 
#'  
#' @param x A number. 
#' @param y A number. 
#' @return The sum of \code{x} and \code{y}. 
#' @examples 
#' add(1, 1) 
#' @export 
add <- function(x, y) { 
  x + y 
}

data

S4

RC

@aliases 
@concepts 
@describeIn 
@examples 
@export 
@family

@inheritParams 
@keywords 
@param 
@rdname 
@return 
@section

@seealso 
@format 
@source 
@include 
@slot 
@field

COMMON ROXYGEN TAGS

devtools::use_data() 
Adds a data object to data/  
(R/Sysdata.rda if internal = TRUE) 

devtools::use_data_raw() 
Adds an R Script used to clean a data set to data-raw/. 
Includes data-raw/ on .Rbuildignore. 

Save data as .Rdata files (suggested)  

Store data in one of data/, R/Sysdata.rda, inst/extdata 

Always use LazyData: true in your DESCRIPTION file.

!
!
!

Store data in  
• data/ to make data available to package users 
• R/sysdata.rda to keep data internal for use by your 

functions. 
• inst/extdata to make raw data available for loading and 

parsing examples. Access this data with system.file()

The " data/ directory allows you to  
include data with your package.

The  # NAMESPACE file helps you make your package self-
contained: it won’t interfere with other packages, and other 
packages won’t interfere with it.

Export functions for users by placing @export in their 
roxygen comments 

Import objects from other packages with 
package::object (recommended) or  @import, 
@importFrom, @importClassesFrom, 
@importMethodsFrom (not always recommended)

1. Modify your code or tests. 
2. Document your package (devtools::document()) 
3. Check NAMESPACE 
4. Repeat until NAMESPACE is correct

!

!

WORKFLOW

SUBMIT YOUR PACKAGE 
r-pkgs.had.co.nz/release.html

ROXYGEN2

https://creativecommons.org/licenses/by/4.0/
mailto:info@rstudio.com
http://rstudio.com
http://rmarkdown.rstudio.com
http://r-pkgs.had.co.nz/release.html

